Feature Analysis for Medical Image Modality Classifier

نویسنده

  • Linga Reddy
چکیده

Nowadays, with the increase in the dreadful diseases, huge amount of database is produced in hospitals and are exponentially increasing day by day. Utilizing these medical images after efficient classification plays a major role in case based reasoning and supports in clinical decision making. Therefore, it is important to classify these images and access them accurately. A modality classifier helps to classify the medical images based on the modality. In our study, we analysed spatial and spectral features of Magnetic Resonance (MR) images and Computer Tomography (CT) scan and also the fusion of these features is performed. It is found that these modalities have different characteristics which help in classification. Initially, these images are preprocessing using the Median filter and spatial and spectral features were extracted and feature fusion is performed. The performance is evaluated using SVM and KNN classifiers based on correctness rate or accuracy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automated Tumor Segmentation Based on Hidden Markov Classifier using Singular Value Decomposition Feature Extraction in Brain MR images

ntroduction: Diagnosing brain tumor is not always easy for doctors, and existence of an assistant that                                                      facilitates the interpretation process is an asset in the clinic. Computer vision techniques are devised to aid the clinic in detecting tumors based on a database of tumor c...

متن کامل

Biomedical Imaging Modality Classification Using Combined Visual Features and Textual Terms

We describe an approach for the automatic modality classification in medical image retrieval task of the 2010 CLEF cross-language image retrieval campaign (ImageCLEF). This paper is focused on the process of feature extraction from medical images and fuses the different extracted visual features and textual feature for modality classification. To extract visual features from the images, we used...

متن کامل

An extended feature set for blind image steganalysis in contourlet domain

The aim of image steganalysis is to detect the presence of hidden messages in stego images. We propose a blind image steganalysis method in Contourlet domain and then show that the embedding process changes statistics of Contourlet coefficients. The suspicious image is transformed into Contourlet space, and then the statistics of Contourlet subbands coefficients are extracted as features. We us...

متن کامل

Medical Image Segmentation Based on Multi-Modal Convolutional Neural Network: Study on Image Fusion Schemes

Image analysis using more than one modality (i.e. multi-modal) has been increasingly applied in the field of biomedical imaging. One of the challenges in performing the multimodal analysis is that there exist multiple schemes for fusing the information from different modalities, where such schemes are application-dependent and lack a unified framework to guide their designs. In this work we fir...

متن کامل

Sample-oriented Domain Adaptation for Image Classification

Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it. The conventional image processing algorithms cannot perform well in scenarios where the training images (source domain) that are used to learn the model have a different distribution with test images (target domain). Also, many real world applicat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016